
Survey of the Fast Computation of the

Reciprocal Square Root through

Integer Operations on Floating-Point Values

Thomas Nelson

University of Massachusetts Lowell

Published July 27, 2017

Abstract

Finding a value’s reciprocal square root has many uses in vector-based calculations,
but arithmetic calculations of finding a square root and performing division are too
computationally expensive for typical large-scale real-time performance constraints.
This survey examines the “Fast Inverse Square Root” algorithm and explores the
techniques of its implementation through examination of the Newton-Raphson Method
of Approximation and the magic-number 0x5f3759df which allow for the reciprocal
square root to be calculated with only multiplication and subtraction operations.

1 Overview

The reciprocal of the square root of a value, 1√
x
, also called the “inverse square root”

is necessary for vector calculations which are instrumental in common 3D-rendering applications.
Due to the time-sensitive nature of these applications, there has been a great deal of
development over the past 20 years in providing fast approximations of this reciprocal
value. While hardware manufacturers began including instruction-set level methods of
performing this calculation in 1999, it has taken some time for these to become widespread
in end-user machines [5]. An algorithm to quickly find this reciprocal, known as the “Fast
Inverse Square Root” algorithm, was popularized and publicized in the late 90s as a
general-use solution.

1

Fast Computation of the Reciprocal Square Root THE ALGORITHM

This survey explores this “Fast Inverse Square Root” algorithm in detail, providing
a full examination of the mathematical formula it employs as well as a derivation of the
notorious magic number 0x5f3759df found therein. The Newton-Raphson Method of
Approximation, which may be used in a general sense to refine approximate solutions to
a formula into more precise approximations, will also be explored in detail due to its core
relevance to the “Fast Inverse Square Root” algorithm. A brief overview of IEEE 754
single-precision floating-point number representation will be made due to its fundamental
relevance to the “floating-point bit-level hacking” employed by the algorithm, before the
ramifications of this are made clear in the derivation of the magic number.

2 The Fast Inverse Square Root Algorithm

Figure 1: Example of Surface Normals[7]

The “Fast Inverse Square Root
Algorithm” (FastInvSqrt()) has been
in use since the mid-to-late-90s, and
became popularly known of and analyzed
through the dissemination of its usage
in the engine of the video game Quake
III Arena. This algorithm was pivotal
in the early development of real-time
3D graphics technologies. 3D graphics
engines are required to calculate “surface
normals” in order to express lighting and
reflection (see figure 1). The calculation
for a surface normal involves dividing a
length of 1 by the square root of each of
its coordinates squared 1√

x2+y2+z2
[6].

Traditional means of finding the square
root and dividing it are computationally expensive, especially as compared to calculating
x2+y2+z2, but the “Fast Inverse Square Root Algorithm” makes this entire computation
very fast.

Algorithmically, FastInvSqrt() is an implementation of the Newton-Raphson Approximation
Method which is performed once from a very good initial guess, which has in turn been
derived through a bit-level manipulation of the floating point representation of the input
value [4]. This simple to compute yet high-quality initial guess for the Newton-Raphson
Approximation Method is what makes this algorithm novel and innovative, as it allows
for a degree of precision comparable to multiple passes of the approximation method for

Thomas Nelson Page 2

Fast Computation of the Reciprocal Square Root THE ALGORITHM

arbitrary input values - with only a single pass required. In rare cases where higher-precision
is demanded, this algorithm has an asymptotic complexity of O(n lg(n)) for n passes of
the Newton-Raphson Method [3].

This survey will provide an overview of the “Fast Inverse Square Root Algorithm”
through analysis of its published source code, before explaining the mechanisms involved
- the Newton-Raphson Approximation Method and the magic number which delivers
such a good initial guess.

2.1 Algorithm Source Code

The notorious source code for “Fast Inverse Square Root”, simplified slightly for
brevity from the published Quake III Arena source of Q rsqrt(), is as follows (original
comments preserved)[6]:

1 float FastInvSqrt(float x) {

2 float xhalf = 0.5f * x;

3 int i = *(int*)&x; // evil floating point bit level hacking

4 i = 0x5f3759df - (i >> 1); // what the fuck?

5 x = *(float*)&i;

6 x = x*(1.5f-(xhalf*x*x));

7 return x;

8 }

2.2 Source Code Analysis

The source code may be described step-by-step as follows:

Step 1: Take an input floating-point number x.
Step 2: Calculate and store half of the input number as a floating point xhalf.
Step 3: Cast x to int32 format and store as i.
Step 4: Bitshift i to the right by one, and arithmetically subtract this bitshifted value

from the magic number 0x5f3759df.
Step 5: Recast i as a floating point, storing as x
Step 6: Perform the Newton-Raphson Approximation using the values of xhalf and x,

overwriting the value of x.
Step 7: Return the value of x.

It is noteworthy that in order to increase precision, the Newton-Raphson Approximation
method may be repeatedly invoked by repetition of Step 6. However, the full version of
the most notorious implementations of this algorithm only perform one Newton-Raphson
Approximation pass, and comments out the performance of a second pass (with the note
to uncomment if additional precision is desired).

Thomas Nelson Page 3

Fast Computation of the Reciprocal Square Root NEWTON-RAPHSON METHOD

2.3 Algorithm Analysis

Without worrying about the details of the low-level implementation, the algorithm
itself may be thought of as a two-step process:

Step 1: Use “evil floating-point bit-level hacking” involving a magic number to manipulate
the input number into a very good initial guess.

Step 2: Use the Newton-Raphson Approximation Method to refine the precision from
this very good initial guess, and return it.

Some academics consider the magic number 0x5f3759df to be sub-optimal, in truth
there exist other magic numbers aside from the one employed in this popular implementation[1][6].
As is, experimentation reveals this implementation of the “Fast Inverse Square Root”
algorithm to perform roughly four times faster than (float)(1.0/sqrt(x)) [1]. Working
backwards from the calculated solution, this survey will first explain how the Newton-Raphson
Method is used to refine a guess before exploring how the initial guess is found.

3 Fast Precision: The Newton-Raphson

Method of Approximation

The Newton-Raphson Method of Approximation is a means of refining a guess at
the root of a function (the value of x where f(x) = 0). The formula requires taking a
guess, gn, and subtracting from it the value of f(gn) over its derivative, f ′(gn), in order
to get the new guess gn+1 which is closer to the root of the function (that is to say, f(gn+1)
is closer to 0 than f(gn) was), as follows:

Newton-Raphson Method of Approximation Formula

gn+1 = gn − f(gn)
f ′(gn)

It should be made clear, that this is a general-purpose formula which can be adapted
to any function with a known derivative in order to find the roots of the function. Nevertheless,
this method can be easily used for refining a guess at the inverse square root problem:
by finding a function error(x) which measures how erroneous a guess x is for an initial
input. Thus, in the “Fast Inverse Square Root” algorithm, we use the Newton-Raphson
Method to minimize our error at guessing the inverse square root [4]. If we take i to be
our initial value for the inverse square root, such that we are trying to solve for 1√

i
, we

may use the following proof to find a means of minimizing error(x):

Thomas Nelson Page 4

Fast Computation of the Reciprocal Square Root NEWTON-RAPHSON METHOD

Step Equation Operation

0 x = 1√
i

Begin with initial function definition

1 x2 = 1
i Square each side

2 1
x2 = i Divide 1 by each side

3 1
x2 − i = 0 Subtract i from each side

4 error(x) = 1
x2 − i Use as function to find root of error(x)

5 error(x) = x−2 − i Simplified error formula

With the chain-rule, we may now find the derivative of the error formula:

Error Formulae

error(x) = x−2 − i

error′(x) = −2x−3

With those in hand, we may incorporate them into the Newton-Raphson Method of
Approximation in order to find a means of minimizing the error of our guess (gn) at the
inverse square root of i and thus find a better guess (gn+1):

Step Equation Operation

0 gn+1 = gn − error(gn)
error′(gn)

Begin with the Newton-Raphson Method of
Approximation, using error(gn) as f(gn)

1 gn+1 = gn − g−2
n −i

error′(gn)
Substitute in the error formula

2 gn+1 = gn − g−2
n −i
−2g−3

n
Substitute in the derivative of the error formula

3 gn+1 = gn + gn−ig3n)
2 Combine numerator and denominator using exponent

manipulation

4 gn+1 = gn(32 −
1
2 ig

2
n) Simplify expression

From this point, one may refine a guess gn into a better guess gn+1 using only gn and the
initial value i, which as used to minimize error corresponds to the initial value x in 1√

x
.

This is a direct parallel to the code:

x = x(1.5f-(xhalf*x*x));

Thomas Nelson Page 5

Fast Computation of the Reciprocal Square Root MAGIC NUMBER

Figure 2: Multiple Newton-Raphson passes
from a poor quality initial guess [4]

wherein xhalf is the stored value of
half the original input (i). This final
formula can be performed with only
computationally cheap multiplication and
subtraction. Now, it must be understood
that if the initial guess is of poor quality
then the Newton-Raphson Method
requires multiple passes in order to ensure
precision (see figure 2). It is assured that
with the Newton-Raphson Method a guess
at the inverse square root may be easily
made more precise: all this approach
requires for speed is a good initial guess.

4 A Good Initial Guess:

The Magic Number Explained

In order for the Newton-Raphson Method of Approximation to arrive at an effective
solution quickly, it must be given as good of a quality initial guess as possible. This is
where the magic number 0x5f3759df comes into play, as this constant provides a means
of arriving at a very good guess with nothing more than a bitshift operation and a subtraction
operation.

4.1 IEEE 754 Floating-Point Representation

Because the “Fast Inverse Square Root” algorithm works on bit-level manipulation
of floating-point values, it is critical that we have an understanding of how numbers
are stored within the IEEE 754 32-bit single-precision floating-point standard. In this
standard, the 32-bit float is partitioned into three sections, the sign bit s, the 8-bits for
the exponent e, and 23-bits for the mantissa m, as shown below:

s e m

31 30 29 29 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Thomas Nelson Page 6

Fast Computation of the Reciprocal Square Root MAGIC NUMBER

In accordance to the IEEE 754 standard these values are not interpreted as-is, which
is to say that each partition is not interpreted as a bitwise integer value. Instead, each
partition is interpreted across a standardized range of values, in accordance to the IEEE
754 standard. This discrepancy is what facilitates the speed of the “Fast Inverse Square
Root Algorithm”, which manipulates a cast bitwise integer interpretation of the floating-point
value’s bit pattern in order to arrive at a very good guess very quickly. As our analysis of
the algorithm has shown, the “evil floating-point bit-level hacking” involves subtracting
a bitshifted original value from a magic number - which may be derived from this IEEE
754 implementation’s rules along with a few algebraic approximations.

4.2 Preparing to Derive the Magic Number

The magic number of the “Fast Inverse Square Root Algorithm” is derivable through
algebraic manipulation of the floating-point representation, bitwise conversion between
integer and floating-point of the mantissa and exponent, and the inverse square root
function. In order to derive the magic number 0x5f3759df we must provide representations
of the exponent and mantissa elements of a floating-point number, e and m respectively,
with the mantissa representing a value between 0 and 1, and the exponent representing a
value between −127 and 128. The algorithm is dependent on the bitwise relation between
the floating-point value and the integer value of the same bits, and the conversion equations
between these interpretations. Thus, while e and m represent the exponent and mantissa
as interpreted by floating-point representation, E and M will be used to represent the
exponent and mantissa as interpreted by integer representation. Then, these formulae
may be used for conversion between the floating-point and integer interpretations[6]:

Conversion Equation

floating-point mantissa from bitwise integer mantissa m = M
L

floating-point exponent from bitwise integer exponent e = E −B

Thomas Nelson Page 7

Fast Computation of the Reciprocal Square Root MAGIC NUMBER

Variable Value Range

m floating-point interpretation of the mantissa [0, 1]

M bitwise integer interpretation of the mantissa [0, (223 − 1)]

e floating-point interpretation of the exponent [−127, 128]

E bitwise integer interpretation of the exponent [0, 255]

L mantissa range: 223 for IEEE 754 floating-point -

B exponent bias: 127 for IEEE 754 floating-point -

We may thus calculate the value of a floating-point number or its bitwise integer interpretation
using these formula:

Equivalent to Calculation

floating-point number value (F) F = (1 +m)2e

integer interpretation value (I) I = M + LE

Figure 3: log2(1 + x) versus x+ σ [6]

As part of the derivation of the
magic number, we must employ a
Logarithm-Linear Approximation
Formula. This Logarithm-Linear
Approximation Formula posits that the
base 2 logarithm of 1 + x is very close to
a straight line for values of x between 0
and 1 (see figure 3), and that this straight
line’s formula is approximately x plus
some offset value σ [6].

Logarithm-Linear Approximation Formula

log2(1 + x) ≈ x+ σ

Thomas Nelson Page 8

Fast Computation of the Reciprocal Square Root MAGIC NUMBER

4.3 Derivation of the Magic Number

With all of this prepared, we may conduct the derivation:

Step Equation Operation

0 y = 1√
x

= x−
1
2 Begin with equation for

reciprocal square root

1 log2y = −1
2 log2x Take the base 2 logarithm of

both sides

2 log2((1 +my)2ey) = −1
2(log2((1 +mx)2ex)) Substitute in floating-point

components

3 log2(1 +my) + ey = −1
2(log2(1 +mx) + ex) Carry through logarithm of

exponent

4 my + σ + ey ≈ −1
2(mx + σ + ex) Employ Logarithm-Linear

Approximation Formula

5
My

L + σ + Ey −B ≈ −1
2(Mx

L + σ + Ex −B) Substitute in bitwise integer
representations of mantissa and
exponent

6
My

L + Ey ≈ −1
2(Mx

L + σ + Ex −B)− σ +B Add (−σ +B) to both sides

7
My

L + Ey ≈ −1
2(Mx

L + Ex)− 3
2(σ −B) Combine −1

2(σ−B) with −σ+B

8 My + LEy ≈ 3
2L(B − σ)− 1

2(Mx + LEx) Multiply both sides by L

9 Iy ≈ 3
2L(B − σ)− 1

2Ix Substitute in integer
representation value I for
M + LE

10 Iy ≈ K − 1
2Ix Substitute in constant K

At this point, we have found that the integer representation of y is an unknown constant
minus half of the integer representation of x:
Iy ≈ K − 1

2Ix
which is a direct parallel to the code:

i = K - (i >> 1);

Thomas Nelson Page 9

Fast Computation of the Reciprocal Square Root MAGIC NUMBER

This value K is our magic number, a constant from which we subtract half the original
integer representation in order to calculate a very good guess at the reciprocal square
root. Thus, our derivation continues by finding the value of K for IEEE 754 floating-point,
substituting the proper values for L and B into the expression 3

2L(B − σ):

Step Equation Operation

11 K = 3
2L(B − σ) Begin with constant expression from previous step

12 K = 3
2223(B − σ) Substitute in 223 for value of L in IEEE 754

floating-point

13 K = 3
2223(127− σ) Substitute in 127 for value of B in IEEE 754

floating-point

From this point, a value must be chosen for σ which produces the best approximation.
While alternative σ values have been suggested by various scholars [1], this survey will
focus on the ramifications of the σ value chosen for the “Fast Inverse Square Root” algorithm
implementation, σ = 0.0450465:

Step Equation Operation

14 K = 3
2223(127− 0.0450465) Substitute in 0.0450465 for value of σ

15 K = 1597463007 Simplify expression

16 K = 0x5f3759df Convert to hexadecimal

Once we bring this constant K back to our integer representation value Iy approximation
formula, we are given our final derivation:

Step Equation Operation

17 Iy ≈ 0x5f3759df −1
2Ix Substitute in magic number for K

From this point, the “Fast Inverse Square Root” algorithm runs this initial guess
value of Iy through the Newton-Raphson Method of Approximation, in order to improve
the level of precision. The actual utilization of the magic number involves a couple datatype
recasts, a bitshift, and a subtraction operation. From this initial guess value, the algorithm
is as simple as multiplication and subtraction.

Thomas Nelson Page 10

Fast Computation of the Reciprocal Square Root CONCLUSION

5 Conclusion

The “Fast Inverse Square Root” algorithm is remarkable in its approach to solving
what seems to be an arithmetically difficult problem by employing only bitshift, multiplication,
recast, and subtraction operations. It is able to perform this through careful sacrifices of
precision by means of sufficiently accurate approximation formulae. By using the Logarithm-Linear
Approximation Formula, log2(1 + x) ≈ x+ σ with a suitable σ value, a very good derived
magic number may be used to generate a very good initial guess using nothing but two
recast operations, a bitshift, and a subtraction operation. From here, the algorithm’s
derivation from the Newton-Raphson Approximaton Method formula demands nothing
more than four multiplication operations and a subtraction operation. Truly, this is an
impressive feat of design through novel and innovative mathematical derivation.

Thomas Nelson Page 11

Fast Computation of the Reciprocal Square Root REFERENCES

References

[1] Chris Lomont, “FAST INVERSE SQUARE ROOT,” Department of
Mathematics, Perdue University, West Lafayette, Feb. 28, 2003. Available:
http://www.lomont.org/Math/Papers/2003/InvSqrt.pdf [Accessed 2 June 2017].

[2] Saad Zafar and Raviteja Adapa, “Hardware architecture design and mapping
of ‘Fast Inverse Square Root’ algorithm,” in The 2014 International Conference
on Advances in Electrical Engineering (ICAEE), India, Jan, 2014. Available:
http://www.dline.info/ed/fulltext/v3n1/4.pdf [Accessed 8 June 2017].

[3] Alexander Yee, “Internals - Inverse Square Root,” Jan 29, 2017. [Online]. Available:
http://www.numberworld.org/y-cruncher/internals/invsqrt.html [Accessed 10 June
2017].

[4] Kalid Azad, “Understanding Quake’s Fast Inverse Square Root,” [Online]. Available:
https://betterexplained.com/articles/understanding-quakes-fast-inverse-square-root
[Accessed 11 June 2017].

[5] Stuart F. Oberman, “Floating Point Division and Square Root Algorithms
and Implementation in the AMD-K7TM Microprocessor,” [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.68.7202&rep=rep1&type=pdf
[Accessed 11 June 2017].

[6] Christian P. Hansen. “0x5f3759df,” [Online]. Available:
http://h14s.p5r.org/2012/09/0x5f3759df.html [Accessed 23 July 2017].

[7] Nicoguaro. “Vectores normales a la superficie xe−x
2−y2 ,” [Online]. Available:

https://commons.wikimedia.org/wiki/File:Surface normals.svg [Accessed 26 July
2017].

University of Massachusetts Lowell: Department of Computer Science,
220 Pawtucket St, Lowell, MA 01854

Email address: Thomas Nelson@student.uml.edu
Web address: www.tjourney.com

First written: July 2017

Thomas Nelson Page 12

